Hypoxia alters the subcellular distribution of protein kinase C isoforms in neonatal rat ventricular myocytes.

نویسندگان

  • M Goldberg
  • H L Zhang
  • S F Steinberg
چکیده

Cardiac myocytes coexpress multiple protein kinase C (PKC) isoforms which likely play distinct roles in signaling pathways leading to changes in contractility, hypertrophy, and ischemic preconditioning. Although PKC has been reported to be activated during myocardial ischemia, the effect of ischemia/hypoxia on individual PKC isoforms has not been determined. This study examines the effect of hypoxia on the subcellular distribution of individual PKC isoforms in cultured neonatal rat ventricular myocytes. Hypoxia induces the redistribution of PKC alpha and PKC epsilon from the soluble to the particulate compartment. This effect (which is presumed to represent activation of PKC alpha and PKC epsilon) is detectable by 1 h, sustained for up to 24 h, and reversible within 1 h of reoxygenation. Inhibition of phospholipase C with tricyclodecan-9-yl-xanthogenate (D609) prevents the hypoxia-induced redistribution of PKC alpha and PKC epsilon, whereas chelation of intracellular calcium with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) blocks the redistribution of PKC alpha, but not PKC epsilon; D609 and BAPTA do not influence the partitioning of PKC alpha and PKC epsilon in normoxic myocytes. Hypoxia, in contrast, decreases the membrane association of PKC delta via a mechanism that is distinct from the hypoxia-induced translocation/activation of PKC alpha/PKC epsilon, since the response is slower in onset, slowly reversible upon reoxygenation, and not blocked by D609 or BAPTA. The hypoxia-induced shift of PKC delta to the soluble compartment does not prevent subsequent 4-beta phorbol 12-myristate-13-acetate-dependent translocation/activation of PKC delta. Hypoxia does not alter the abundance of any PKC isoform nor does it alter the subcellular distribution of PKC lambda. The selective hypoxia-induced activation of PKC isoforms through a pathway involving phospholipase C (PKC alpha/PKC epsilon) and intracellular calcium (PKC alpha) may critically influence cardiac myocyte contractility, gene expression, and/or tolerance to ischemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased protein kinase C activity in myotrophin-induced myocyte growth.

Myotrophin, a novel protein that has been shown to stimulate myocyte growth, has been isolated, purified, and sequenced from the hearts of spontaneously hypertensive rats and dilated cardiomyopathic human tissue. Recently, the cDNA clones encoding myotrophin have been isolated and expressed in Escherichia coli, and the recombinant myotrophin was found to be as biologically and immunologically a...

متن کامل

Protein kinase C isoform expression and regulation in the developing rat heart.

To determine whether age-dependent differences in cardiac responses to autonomic agonists could result from developmental changes in protein kinase C (PKC) isoform expression, we probed extracts from the fetal, neonatal, and adult heart as well as cultured neonatal and isolated adult ventricular myocytes with specific antisera to calcium-dependent (alpha and beta) and calcium-independent (delta...

متن کامل

Protein kinase C isoform expression and activity in the mouse heart.

The expression of protein kinase C (PKC) isoforms in the developing murine ventricle was studied using Western blotting, assays of PKC activity, and immunoprecipitations. The abundance of two Ca2+-dependent isoforms, PKCalpha and PKCbetaII, as well as two Ca2+-independent isoforms, PKCdelta and PKCepsilon, decreased during postnatal development to <15% of the levels detected at embryonic day 18...

متن کامل

Gap junctional remodeling by hypoxia in cultured neonatal rat ventricular myocytes.

OBJECTIVES Altered gap junctional coupling of ventricular myocytes plays an important role in arrhythmogenesis in ischemic heart disease. Since hypoxia is a major component of ischemia, we tested the hypothesis that hypoxia causes gap junctional remodeling accompanied by conduction disturbances. METHODS Cultured neonatal rat ventricular myocytes were exposed to hypoxia (1% O(2)) for 15 min to...

متن کامل

Tyrosine kinase and c-Jun NH2-terminal kinase mediate hypertrophic responses to prostaglandin F2alpha in cultured neonatal rat ventricular myocytes.

Myocardial infarction results in focal areas of ischemia, hypoxia, necrosis, and decreased contractile function. To compensate for loss of contractile function, remaining viable myocytes undergo hypertrophic growth. Prostaglandin F2alpha (PGF2alpha), which is released from cells of the myocardium during periods of stress such as hypoxia or ischemia/reperfusion, has recently been shown to stimul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 99 1  شماره 

صفحات  -

تاریخ انتشار 1997